The generator matrix 1 0 1 1 1 X^2+X 1 0 1 1 X^2+X 1 1 1 X^2 X^2 1 1 X 1 1 X^2+X 0 1 1 1 1 X^2+X X^2 1 1 1 1 1 X 0 1 X 0 1 1 0 X^2+X+1 1 X 1 X^2+X+1 1 1 X^2+X X^2 X+1 1 1 X^2+X+1 0 1 X^2+1 X 1 1 X^2+1 X^2+X+1 0 0 1 1 X^2+1 1 X+1 X^2+X 1 1 X X^2+1 X^2 0 0 X 0 X^2+X 0 0 X X^2 X^2 X^2+X X^2 X X X^2+X 0 0 X X^2 X^2 X X^2+X X^2 X^2+X X^2+X X X X X X X^2+X X X^2+X X^2+X 0 X^2 X^2 X 0 0 0 X 0 0 X^2+X X X^2+X X^2+X X X^2 X^2 X X^2 X 0 X^2+X X X^2 X^2 0 0 X^2+X 0 X^2+X X^2+X X X X^2+X X 0 X^2+X 0 X^2+X X^2+X 0 X^2 0 0 0 0 X^2 0 X^2 X^2 0 X^2 0 X^2 X^2 0 0 0 X^2 0 0 0 X^2 0 X^2 X^2 0 X^2 X^2 0 X^2 0 0 X^2 0 X^2 X^2 0 0 0 0 0 0 0 0 X^2 0 0 0 X^2 X^2 0 0 X^2 0 0 X^2 0 X^2 0 X^2 X^2 X^2 0 X^2 0 X^2 0 X^2 X^2 0 X^2 X^2 X^2 X^2 X^2 0 0 generates a code of length 38 over Z2[X]/(X^3) who´s minimum homogenous weight is 32. Homogenous weight enumerator: w(x)=1x^0+122x^32+92x^33+378x^34+244x^35+572x^36+456x^37+538x^38+408x^39+481x^40+220x^41+282x^42+116x^43+111x^44+46x^46+24x^48+4x^50+1x^52 The gray image is a linear code over GF(2) with n=152, k=12 and d=64. This code was found by Heurico 1.16 in 0.458 seconds.